Investigation of Residence and Travel Times in a Large Floodplain Lake with Complex Lake–River Interactions: Poyang Lake (China)
نویسندگان
چکیده
Most biochemical processes and associated water quality in lakes depends on their flushing abilities. The main objective of this study was to investigate the transport time scale in a large floodplain lake, Poyang Lake (China). A 2D hydrodynamic model (MIKE 21) was combined with dye tracer simulations to determine residence and travel times of the lake for various water level variation periods. The results indicate that Poyang Lake exhibits strong but spatially heterogeneous residence times that vary with its highly seasonal water level dynamics. Generally, the average residence times are less than 10 days along the lake’s main flow channels due to the prevailing northward flow pattern; whereas approximately 30 days were estimated during high water level conditions in the summer. The local topographically controlled flow patterns substantially increase the residence time in some bays with high spatial values of six months to one year during all water level variation periods. Depending on changes in the water level regime, the travel times from the pollution sources to the lake outlet during the high and falling water level periods (up to 32 days) are four times greater than those under the rising and low water level periods (approximately seven days). OPEN ACCESS
منابع مشابه
Estimation of Transport Trajectory and Residence Time in Large River–Lake Systems: Application to Poyang Lake (China) Using a Combined Model Approach
The biochemical processes and associated water quality in many lakes mainly depend on their transport behaviors. Most existing methodologies for investigating transport behaviors are based on physically based numerical models. The pollutant transport trajectory and residence time of Poyang Lake are thought to have important implications for the steadily deteriorating water quality and the assoc...
متن کاملInvestigation of Water Temperature Variations and Sensitivities in a Large Floodplain Lake System (Poyang Lake, China) Using a Hydrodynamic Model
Although changes in water temperature influence the rates of many ecosystem processes in lakes, knowledge of the water temperature regime for large floodplain lake systems subjected to multiple stressors has received little attention. The coupled models can serve to derive more knowledge on the water temperature impact on lake ecosystems. For this purpose, we used a physically-based hydrodynami...
متن کاملSeasonal Water Exchanges between China’s Poyang Lake and Its Saucer-Shaped Depressions on River Deltas
The saucer-shaped depressions located at the river deltas of Poyang Lake are typical floodplain shallow sub-lakes subject to river-lake connection or isolation. The hydrological connectivity between these depressions and the main lake has a major influence on the hydrologic function and ecological integrity of the lake-floodplain and associated wetland habitats. This study explored the water le...
متن کاملMapping Dynamics of Inundation Patterns of Two Largest River-Connected Lakes in China: A Comparative Study
Poyang Lake and Dongting Lake are the two largest freshwater lakes in China. The lakes are located approximately 300 km apart on the middle reaches of the Yangtze River and are differently connected through their respective tributary systems, which will lead to different river–lake water exchanges and discharges. Thus, differences in their morphological and hydrological conditions should induce...
متن کاملLinkage between Three Gorges Dam impacts and the dramatic recessions in China’s largest freshwater lake, Poyang Lake
Despite comprising a small portion of the earth's surface, lakes are vitally important for global ecosystem cycling. However, lake systems worldwide are extremely fragile, and many are shrinking due to changing climate and anthropogenic activities. Here, we show that Poyang Lake, the largest freshwater lake in China, has experienced a dramatic and prolonged recession, which began in late Septem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015